Hemodiafiltration maintains a sustained improvement in BP compared to conventional hemodialysis in children - the HDF, Heart and Height (3H) study

Dr. Francesca De Zan, 1 Prof. Aysun Bayazit2, Dr. Karolis Azukaitis3, Prof. Nur Canpolat4, Prof. Sevcan Bakkaloglu5, Dr. Saoussen Krid6, Prof. Mieczyslaw Litwin7, Dr. Fabio Paglialonga8, Dr. Charlotte Samaille9, Dr. Mohan Shenoy10, Dr. Manish Sinha11, Dr. Brankica Spasojevic12, Prof. Claus Peter Schmitt13, Prof. Franz Schaefer13, Prof. Enrico Vidal14, Dr. Rukshana Shroff15

1 University Hospital of Padova, Padova, Italy, 2 Cukurova University, Adana, Turkey, 3 Clinic of Pediatrics, Vilnius University, Vilnius, Lithuania, 4 Cerrahpasa School of Medicine, Istanbul, Turkey, 5 Gazi University Hospital, Ankara, Turkey, 6 Hôpital Necker-Enfants Malades, Paris, France, 7 Children’s Memorial Health Institute, Warsaw, Poland, 8 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy, 9 Hôpital Jeanne De Flandre, Lille Cedex, France, 10 Royal Manchester Children’s Hospital, Manchester, UK, 11 Evelina Children’s Hospital, London, UK, 12 University Children’s Hospital, Belgrade, Serbia, 13 Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany, 14 Division of Pediatrics, Department of Medicine, University of Udine, Udine, Italy, 15 Great Ormond Street Hospital for Children NHS Foundation Trust, and University College London Institute of Child Health, London, UK

Introduction: Fluid overload, hypertension and cardiovascular disease are common in children on dialysis. In adults, hemodiafiltration (HDF) may reduce cardiovascular mortality, but data in children are scarce. A non-randomized parallel-arm study to compare outcomes on conventional hemodialysis (HD) versus post-dilution on-line HDF - the HDF, Heart and Height (3H) study – has shown a significant difference in 24-hour ambulatory mean arterial pressure standard deviation score (MAP-SDS), with 81% of HD and 38% of HDF patients having MAP-SDS above 2SD of normal at 12-month follow-up. However, the trend in BP over time and risk factors for hypertension were not studied.

Method: This is a post-hoc analysis of the 3H-dataset. The time-averaged 24-h mean arterial pressure (MAP) was used for the analyses and hypertension defined as 24-h MAP standard deviation score exceeding the 95th percentile.

Results: All 133 children who completed 12 months follow-up in the 3H study were included in this post-hoc analysis. 78 (59%) were on HD and 55 (41%) on HDF. At baseline MAP-SDS was > 95th percentile in 64 (82%) of children on HD and 23 (41.8%) patients on HDF, but these data are skewed by a high percentage of prevalent dialysis patients in the study. Both incident and prevalent HD patients increased their MAP-SDS from baseline to 12-months (p = 0.007 and p = 0.004 respectively), whereas there was no change in incident or prevalent HDF patients (p = 0.38 and p = 0.11 respectively). 43 (55%) of HD patients and 23 (42%) of HDF patients were on antihypertensive medications, and uncontrolled hypertension (BP>95th centile on medications) was present in 38 (88%) of HD patients and 6 (25%) of HDF patients. In the stepwise logistic regression at baseline, independent risk factors for hypertension were gender (OR 2.29; 95% CI 1.06–4.96; p=0.04) and inter-dialytic weight gain at baseline (OR 1.3; 95% CI 1.1–1.55; p=0.004). Over the one-year study period, MAP-SDS increased by 39% in HD patients and 12% in HDF patients (p< 0.001) (Figure). Significant risk factors for hypertension over time were dialysis modality (OR for HD compared to HDF 7.65; 95% CI 3.23 – 18.12; p< 0.001), inter-dialytic weight gain (OR 1.21; 95% CI 1.05 – 1.39; p=0.007), and dialysate sodium (for 1 mmol/L increase in dialysate sodium MAP-SDS increased by 1.1mmHg ; 95% CI 1.01 – 1.21; p=0.04).
Discussion: Children on HD compared to HDF had a 7.6-fold higher 24-hr MAP-SDS and a sustained increase in BP over the one-year study period. Higher inter-dialytic weight gain and higher dialysate sodium levels were associated with a higher MAP-SDS in both groups.